

DGG-003-010401 Seat No. _____

M. Sc. (Sem. IV) (CBCS) Examination

April / May - 2015

C - 401 : Spectroscopy

(All Branches)

Faculty Code: 003 Subject Code: 010401

Time: $2\frac{1}{2}$ Hours] [Total Marks: **70**

Instruction: All questions carry equal marks

- 1. Answer the following (Any Seven):
 - a. Give the full form of the following terms: DEPT, NOE, FAB, EI, CI.

Also enlist at least five deuterated solvents.

- b. When and who formulated the empirical rules for the calculations of λ_{max} in conjugated diene and triene systems. Also give the wavelength ranges for far and near UV regions.
- c. What are mass spectrum and base peak? What information can be derived from a given mass spectrum? List common detectors used in mass spectroscopy.
- d. State the wavelength ranges for near and far infrared regions. What information can be deduced from a given IR spectrum? Also state applications of IR spectroscopy.
- e. Give the possible structures of isomeric ethers having molecular formula $C_4H_{10}O$. How many signals will be observed in $^{13}CNMR$ spectrum of each of the compound?
- f. State the factors affecting chemical shifts. By which processes ¹³CNMR spectra can be simplified?
- g. An organic compound having MF $C_4H_{10}O$ shows one doublet, one triplet, and two quartets in its off resonance proton decoupled ¹³CNMR spectrum. Deduce the structure of the compound. Also predict its ¹HNMR signals with splitting pattern.
- h. Fill in the blanks:
 - i. From DEPT spectrum one can distinguish ------ and ----- groups.
 - ii. IR spectroscopy is also known as ----- spectroscopy. The IR region below 1500cm⁻¹ is known as ----- region.
 - iii. Protons attached to adjacent atoms are called as ----- and they are separated by ------ bonds.
- iv. Among all transitions ------ transition requires least energy, while -----transition requires high energy ------ bonds stronger bonds.

- i. Select the appropriate answer:
 - i. Proton decoupled ¹³C NMR spectra of o, m, p xylene exhibit -----signals.
 - A 3, 4, 5
 - B 4, 5, 3
 - C 5, 4, 3
 - D 3, 5, 4
 - ii. The region extending from 200 to 380 nm is called
 - A. Near UV
 - B. Quartz
 - C. Both A and B
 - D. Visible
- iii. Vibrational frequencies are affected by ----
 - A Coupled vibrations
 - **B** Fermi resonance
 - C Hydrogen bonding
 - D Inductive and mesomeric effects
- iv. Which one of the following compounds shows 5 ¹³CNMR signals?
 - A. 1,4-Dihydroxy benzene
 - B. 1,3-Dihydroxy benzene
 - C. 1,2-Dihydroxy benzene
 - D. None of the above
- j. The mass spectrum of ethyl benzene has shown peaks at m/e 106, 91, 65, give the structure of the probable species. Also state the number of ¹³CNMR and ¹HNMR signals with their multiplicities.
- 2. Answer the following:
 - a. Discuss IR, ¹H and ¹³CNMR, and mass spectral analysis of isopentyl acetate.
 - b. Discuss sample handling techniques in IR spectroscopy.
- 3. Write notes on following (Any Two):
 - a. UV transitions
 - b. Mass spectrometer
 - c. 13CNMR chemical shifts
 - d. Double beam IR spectrometer
- 4. Answer the following:
 - a. Distinguish following pairs of compounds by ¹HNMR spectroscopy.
 - A 1,2-Dimethoxyethane and 1,1-dimethoxyethane
 - B cis-1-chloropropene and trans-1-chloropropene
 - C CH₃COCH₃ and CH₃COOCH₃
 - b. Explain mass fragmentation of following:
 - A. Methyl butyrate
 - B. Methyl benzoate
 - C. Acetophenone

c. How will you distinguish methylpropionate and ethyl acetate by ¹HNMR spectroscopy? Also predict ¹³CNMR signals of these compounds.

OR

4. Answer the following:

a. For below compounds calculate λ max using Woodward-Fisher rules.

Following data are given:

- 1. Parent α , β -unsaturated six or more or acyclic ketone = 215nm
- 2. Parent α , β -unsaturated five ring ketone = 202 nm
- 3. Each exocyclic double bond = 15 nm
- 4. A double bond extending conjugation = 30 nm
- 5. Homodiene component = 39 nm
- 6. Each alkyl group or ring residue at α position= 10 nm, β position = 12 nm, Υ or δ and higher = 18 nm
- 7. OH group $\alpha = 35$ nm, $\beta = 30$ nm, $\Upsilon = -$, δ or higher = 50 nm
- b. A liquid compound of molecular formula $C_9H_{10}O_2$ gave following spectral data:

IR (Cm⁻¹): 1720(s), 1602(m), 1581(m), 1270(s), 1105(s)

¹H NMR (δ): 1.29 (t), 4.35 (q), 7.40 (m), 8.81 (m)

Establish the structure of the compound and also predict the principal ions in its mass spectrum and number of ¹³CNMR proton coupled signals with their mul tiplicities.

5. Answer the following:

- a. (i) Outline the mode of fragmentation leading to the ions causing peaks in the mass spectrum of the following compounds:
 - A. Pentanoic acid at m/e 60
 - B. Phenetole (C₆H₅OC₂H₅) at m/e 94
 - C. Dimethylamine at m/e 30

(ii) In the mass spectrum of an unsaturated hydrocarbon, the molecular ion M^+ peak has relative intensity 70.0, the M+1 4.7 and the base peak a relative intensity of 100. How many carbon atoms are there in the hydrocarbon per molecule.

OR

a. An organic compound of molecular formula C₅H₁₁Cl gave following ¹HNMR signals:

Chemical shift, ppm	1.0	1.5	1.8
Multiplicity	Triplet	Singlet	Quartet
No. of protons	3	6	2

Deduce the structure of the compound and also give characteristic IR absorption peaks and number of proton coupled ¹³CNMR peaks.

- b. Distinguish following pairs of the compounds by IR and ¹HNMR spectroscopy:
 - A. CH₃COOH and HCOOCH₃
 - B. CICH₂CH₂CH₂COOH and CH₃OCH₂CH₂COCI
 - C. CH₃CH₂CHO and CH₂=CHCH₂OH
- c. Calculate the chemical shifts of 3-methylpentane and n-hexane. Following data are given below:

13C	Shift A,
atoms	ppm
α	9.1
β	9.4
Υ	-2.5
δ	0.3
3	0.1
1°(3°)	-1.1
1°(4°)	-3.4

13C	Shift A,
atoms	ppm
2°(3°)	-2.5
2°(4°)	-7.2
3°(2°)	-3.7
3°(3°)	-9.5
4°(1°)	-1.5
4°(2°)	-8.4